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Abstract. Convolutional Neural Networks (CNNs) have proven to
be an efficient tool to classify medical image data. In this paper,
we propose a new shallow CNN to classify into presence or absence
of microcalcifications clusters in digital mammograms. The network
consists of two convolutional layers of 6 and 16 filters of size 9 × 9,
respectively without pooling layers. After, a GlobalPooling layer is used
to reduce the dimensionality from 3D to 1D and to avoid the flattening
operation and the dense layers. The output layer is a sigmoid function
for binary classification purposes. The loss function used was the Binary
Cross Entropy. The network was trained using the INbreast database.
The overall accuracy of the network is 99.3% with 8,301 parameters
with as compare to the MobileNetV2 network that achieves 99.8% with
67,797,505 parameters.
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1 Introduction

Breast cancer is the most prevalent cancer among women being a significant
problem of public health [10]. Microcalcifications (MCs) are the most significant
indirect signs of early breast cancer and its detection represents a 99% survival
at 5 years or more [3]. The MCs are small deposits of calcium typically in the
range of 0.1 mm to 1 mm [4]. The microcalcifications clusters (MCCs) are found
in up to 50% of mammograms with confirmed cancer and correspond to at least
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three MCs per cm2 [17, 19, 20]. Mammography is described as the most widely
used technique for the detection of breast cancer in early stages [4, 7].

Currently, Deep Learning (DL) models [13], trained with large amounts
of data, have achieved high degrees of accuracy. In this sense, the CNNs
techniques are studied in the field of MCCs detection [4]. The problem is that
the mammographs or X-ray scanners have specific configurations, making them
different from each other. Consequently, each hospital or clinic would have to
train their own model, which would be a complicated situation because of the
CNN architectures have become more complex and deeper, requiring a lot of
computational power, specialized equipment and time invested to train a model.

Automatic systems to discriminate MCCs from normal tissue are always
demanded. Hence, we propose a shallow CNN to classify patches of digital
mammograms into presence or absence of MCCs. The network consists of two
convolutional layers of 6 and 16 filters of size 9× 9, respectively without pooling
layers. A GlobalPooling is used to reduce the dimensionality and to avoid the
flattening operation and the dense layers. For binary classification, the output
layer is a sigmoid function. The loss function used was the Binary Cross Entropy
(BCE). This work is a continuation of the research presented in [12].

The main contribution of the paper is:

– A light and shallow CNN to classify MCCs in digital mammograms. The
network is light because of its reduced number of parameters and shallow
because it has two convolutional layers only.

The rest of the article is organized as follows: in Section 2, the state of the art.
In Section 3, the material and methods are shown. In Section 4, the experiments
and results are presented. In Section 5, the discussion of the results is presented.
Finally, the conclusions are presented in Section 6.

2 State of the Art

In our perusal, around 90 journal papers were analyzed. This section describes
the current evidence found related to the detection of MCCs using DL.

Hsieh et al. [9], implemented a VGG-16 network to find MCCs in
mammograms. A Mask R-CNN was used to segment the MCCs of the
previously found MCCs and remove background noise. Then, the InceptionV3
was used to classify MCCs into benign or malignant. Accuracy for classification
and detection was 93%, for MCs labeling 95%, and classification 91%.
Precision, specificity, and sensitivity of the entire method was 87%, 89%,
and 90%, respectively.

Rehman et al. [15], proposed a Fully Connected Deep CNN (FC-DSCNN)
diagnosis system to detect MCCs and classify them into the classes benign
and malignant. The proposed system has four steps: 1) image processing and
data augmentation, 2) RGB to a grayscale transformation, 3) suspicious regions
segmentation and 4) MCCs classification. First, the mammogram is divided
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into subregions and sent to the FC-DSCNN to classify them into malignant
and benign class. A total of 6,453 mammograms, from the DDSM and PINUM
databases, were used. The results showed a sensitivity, a specificity, a precision
and a recall of 99%, 82%, 89% and 82%, respectively.

Valvano et al. [18], developed two CNNs, one to detect possible Regions of
Interest (ROIS) containing MCs and the other to segment the ROIS. They used
283 mammograms with a resolution of 0.05 mm from a private database. Square
patches of n×n, overlapped by n/2 pixels were extracted from the mammogram.
For each patch, a positive label was associated when the patch contains MCs and
a negative label when it does not. Each patch is processed by a CNN that detects
the presence or absence of MCs. Afterwards, the ROIS found are entered into a
segmentation CNN, which returns a mask. The mask is analyzed by a labeling
algorithm to locate the position of each MC within the mask. Both CNNs are
built of six convolutional layers with kernel of 3 × 3 and stride of one. Patches
of 29, 39 and 49 squared pixels were used. The last size yielded the best results
with an accuracy of 98.22% for the detector and 97.47% for the segmenter.

Gómez et al. [8], proposed a methodology to preprocess digital mammograms
from the mini-MIAS and the UTP databases to detect presence or absence of
MCCs. First, they divided mammograms in 4,292 patches of size 101×101 pixels,
3,500 used for training and 792 for testing purposes. In total, 2,360 patches out
of the 4,292 contained MCCs and 1,932 did not contained these lesions. The
CNN proposed used seven hidden layers with 8, 16, 32, 64, 128, 256, and 512
filters, respectively and kernel size of 3 × 3. After each convolutional layer, a
2 × 2 MaxPooling layer and a layer of Rectified Linear Unit (ReLU) activation
functions were added. A softmax layer was used for multiclass classification
purposes. The model yielded an accuracy of 96.26% during training while during
testing 95.83%.

Luna et al. [12], presented a comparison of the CNN architectures
InceptionV3, DenseNet121, ResNet50, VGG-16, MobileNetV2, LeNet-5 and
AlexNet for classifying MCCs. In the best testing accuracies, InceptionV3
achieved 99.71%, DenseNet121, ResNet50 and VGG-16 yielded 99.74%,
MobileNetV2 obtained the best overall accuracy with 99.84%, LeNet-5 99.30%
and AlexNet 99.40%.

3 Materials and Methods

The CNN model was created using the Google Colaboratory Integrated
Development Environment (IDE) [6], Python 3.0 language, and
TensorFlow framework 2.0 [1]. The IDE automatically allocates the
necessary computational resources.

The INbreast public database [14] was used to train the model. It contains
410 digital mammograms of size 2, 560 × 3, 328 pixels and 3, 328 × 4, 084
pixels with 8-bit depth (grayscale). The mammograms are labeled with various
types of lesions such as asymmetries, calcifications, microcalcification clusters,
distortions, regions spiculate, masses or nodules, and pectoral muscle. These
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Fig. 1. Examples of mammograms showing MCCs highlighted within a circle.

(a) (b)

Fig. 2. Patches of digital mammograms (a) with MCCs and (b) normal tissue.

mammograms were acquired using the MammoNovation Siemens FFDM
scanner. Each pixel in the image represents 70 microns. In this work, only cases
labeled as MCCs were utilized. In Fig. 1, five example images labeled as MCCs
from the database are shown.

3.1 Data Preparation

Digital mammograms in the INbreast database are stored in DICOM format.
Therefore, we converted them into the PNG format. The labeling and coordinates
of the breast lesions were searched in their corresponding XML file, independent
of the images. To mark the lesions on the digital mammograms, it was necessary
to develop a computer program to read the coordinates of the MCCs from the file.

Patch Extraction. The proposed CNN model processes the mammograms in
patches of 1 cm2. This corresponds to squares of area 144 × 144 pixels. We
developed a computer program to extract the patches from the mammogram.
Figs. 2(a) and 2(b) show two examples of patches with MCCs and normal
tissue respectively. An expert radiologist doctor analyzed the patches manually
discarding the wrong ones. She selected a total of 1,576 patches with MCCs and
1,692 without these injuries.

Data Augmentation. Due to the limited availability of mammograms labeled
with MCCs in the INbreast database, there were not enough patches to
adequately train, validate, and test the models. To address this issue, we
augmented the database to enhance precision. In Fig. 3, we illustrate four

8

Ricardo Salvador Luna-Lozoya, Humberto de Jesús Ochoa-Domínguez, et al.

Research in Computing Science 152(10), 2023 ISSN 1870-4069



(a) (b) (c) (d)

Fig. 3. Examples of geometric transformations on one patch. (a) Reflection, (b) 180o

turn, (c) reflection and 180o turn, and (d) 90o turn.

geometric transformations applied to the patches. This augmentation process
resulted in a total of 6,304 transformed patches with MCCs and 6,768 without
MCCs. Only geometric transformations were employed to augment the data in
order to ensure that the features of each patch remained unaltered. As a result,
the augmented database comprises 7,880 patches with MCCs and 8,460 patches
without MCCs, totaling 16,340 patches.

The Datasets. A total of 15,760 patches were collected, consisting of 7,880
patches containing MCCs and 7,880 patches representing normal tissue samples.
It was determined by the Pareto’s Principle [2] that 80% of the data would
be used for both training and validation, while the remaining 20% would be
reserved for testing purposes. To be specific, for training purposes, we utilized
64% (10,088 patches).

For validation, we allocated 16% (2,520 patches), and for testing, we reserved
20% (3,152 patches). This partitioning strategy proved effective in achieving
optimal results. To ensure consistency, all patches were normalized by dividing
their pixel values by 255, given that the pixel depth was eight bits.
The Proposed Architecture. In [12], we compared different CNN
architectures and recommend the best performing layer types for classifying
MCCs. From here, the CNN MobileNetV2 [16] yielded the highest overall
accuracy of 99.8% with 67,797,505 parameters.

In the same work, the CNN LeNet-5 [11] yielded an accuracy of 99.3% with
2,233,365 parameters. The difference in accuracies is only 0.539%. However, the
LeNet-5 is 30 times smaller. Therefore, to classify MCCs it is not necessary to
implement Deep CNNs. Hence, after extensive testings and combinations of the
layers suggested in [12], we obtained the shallow CNNmodel shown in Fig. 4, that
comprises only two convolutional layers without any intervening pooling layers.
To optimize the number of trainable parameters, the conventional combination
of a flat layer with a fully connected layer was replaced with a GlobalPooling
layer, resulting in a significant reduction of parameters.

The input layer extracts the characteristics of the patches x from mini batches
of size 64. The layer comprises 6 filters W0 of size 9 × 9 with biases B0 and a
layer of ReLU activation functions. The output can be defined as in Eq. (1):

F0 = max(0,W0x+B0). (1)
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Fig. 4. Proposed CNN architecture to classify MCCs.

The second layer has 16 filtersW1 of 9×9 with another ReLU layer. Similarly,
at the output of this layer we have Eq. (2):

F1 = max(0,W1F0 +B1). (2)

The output volume F1 represents the feature maps of the second layer which
are further processed by a GlobalPooling layer, which extracts the highest value
of each map as shown in Eq. (3):

F2 = max(F1). (3)

The features from the GlobalPooling are sent to the sigmoid to predict the
probability of the binary variable as represented in Eq. (4):

ŷ = σ(F2). (4)

The BCE cost function is shown in Eq. (5):

L(y, ŷ) = − 1

m

m∑
i=1

[yi · log(ŷi) + (1− yi) · log(1− ŷi)] . (5)

Where m is the size of the training set used, yi is the target value that can
take two possible values, 0 or 1 (presence or absence of MCCs), and ŷi is the
predicted value. We used dropout to regularize the network.

Hyperparameter Tuning. The tuning of hyperparameters consists of
choosing the values that achieve the maximum performance of the model. We
used the random search method [5] for hyperparameter tuning, because the
proposed network is very short and allows us to specify the number of models
to train. Besides, we can base our search interactions on our computational
resources (which is limited) or the time taken by iteration. The validation loss
was monitored for up to 100 epochs. The resulting hyperparameters are shown
in Table 1.
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Table 1. Resulting hyperparameters for the proposed CNN architecture.

Hyperparameter Value

First Convolutional Layer

Number of features map 6

Kernel size 9 x 9

Activation funcion ReLU

Second Convolutional Layer

Number of features maps 16

Kernel size 9 x 9

Activation Function ReLU

GlobalPooling Layer

Number of features 16

Dense Layer

Units 1

Activation Function Sigmoid

Network Training

Loss function Binary Cross Entropy (BCE)

Optimization algorithm Adaptive Moment Estimation (ADAM)

Learning rate 0.001

Batch size 64

Epochs 100

Dropout Keep 80%

4 Experiments and Results

The output layer is a sigmoid with real output between 0 and 1. In our work,
the range between 0 and 0.49 indicates ’0’ or absence and from 0.5 to 1 indicates
’1’ or presence of MCCs in a patch. All the models tested were trained with one
hundred epochs. At the end of each epoch, the models were validated with the
validation set to obtain the accuracy and the error. We selected the model with
the highest accuracy. The dense layer is the output sigmod whose inputs are
the 16 output features delivered by the GlobalPooling layer plus a bias term.
Table 2 presents the number of parameters per layer, as well as the sum of these
parameters after hyperparameter tuning.

The accuracy and loss plots during the training and validation are depicted
in Fig. 5. Upon closer inspection, it becomes evident that both the training and
validation results exhibit remarkable similarity. Table 3 shows the results of the
proposed network compared with the state-of-the-art MobileNetV2 and LeNet-5.
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Table 2. Parameters of the proposed CNN architecture.

Type of Layer Parameters

Convolution 1 492
Convolution 2 7,792
Dense 17

Total 8,301

(a) (b)

Fig. 5. Proposed CNN performance during training and validation epochs. (a) shows
the accuracy performance and (b) shows the loss performance.

5 Discussion

From Figure 5, it shows that the training and validation accuracies follow each
other very closely. Also, the losses of training and validation are similar and
the validation loss does not increase after a number of epochs, showing that no
overfitting is present.

Table 3 shows that the accuracy of the MobileNetV2 is greater by only 0.5%.
However, the number of parameters of the proposed network is much less even
than the LeNet-5, which makes the proposed network light and shallow suitable
for MCCs classification.

Clean data is important for optimal model performance. In this work, the
data set was cleaned by an expert. She validated the model by observing the
patch and checking the decision made by network (presence/absence).

The continuation of the present investigation is a faster residual network,
with better performance, under the assumption that it is not necessary a deep
neural network to classify MCCs. Also, the networks reported in [12] are being
investigated to include other type of lesions.
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Table 3. Performance comparison of the proposed CNN versus the MobileNetV2 and
the LeNet-5.

Architecture Accuracy Parameters

MobileNetV2 99.8% 67,797,505
LeNet-5 99.3% 2,233,365
Proposed 99.3% 8,301

6 Conclusions

We presented a new shallow CNN architecture to classify MCCs using only
two convolutional layers without pooling layers between the convolutions and
a GlobalMaxPooling layer. The results of the proposed model yielded similar
results to the deeper CNN MobileNetV2. This demostrate that for MCCs
classification, shallow networks produce similar results to their deeper and
more complex counterparts. The proposed model is already implemented in a
web application that inspects digital mammograms. The application is been
tested in collaboration with the Centro de Imagen e Investigación (Medimagen)
of Chihuahua, México. Currently, we are compiling a database of Mexican
mammograms to train shallow models that can work in hospitals and clinics
of the country.
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